
Core QUIC: Enabling Dynamic,
Implementation-Agnostic Protocol Extensions

Quentin De Coninck
University of Mons (UMONS)

Mons, Belgium
quentin.deconinck@umons.ac.be

Abstract—While applications quickly evolve, Internet protocols
do not follow the same pace. There are two root causes for
this. First, extending protocol with cleartext control plane is
usually hindered by various network devices such as middleboxes.
Second, such extensions usually require support from all partic-
ipating entities, but often these run different implementations,
leading to the chicken-and-egg deployment issue. The recently
standardized QUIC protocol paved the way for dealing with the
first concern by embedding encryption by design. However, it
attracted so much interest that there is now a large heterogeneity
in QUIC implementations, hence amplifying the second problem.

To get rid of these deployment issues and to enable inter-
operable, implementation-independent innovation at transport
layer, we propose a paradigm shift called Core QUIC. While Core
QUIC keeps compliant with the standardized QUIC protocol, it
enforces implementation architecture such that any Core QUIC-
supporting participant can be extended with the same, generic
bytecode. To achieve this, Core QUIC defines a standardized
representation format of common QUIC structures on which
plugins running in a controlled environment can operate to
extend the underlying host implementation. We demonstrate the
feasibility of our approach by making two implementations Core
QUIC-compliant. Then, we show that we can extend both with
the same plugin code over several use cases.

I. INTRODUCTION

Deploying new features in end-to-end protocols over the
Internet is difficult. Two main elements affect this. First, there
are many middleboxes in the network affecting the behavior
of communicating protocols. In-network devices often interact
with the traffic based on its public metadata, such as packet
headers. Extending TCP was shown to be difficult [1] since
its options are observable by in-network third-parties such as
firewalls that may block them. Legacy devices also prevented
protocols such as SCTP [2] from being broadly deployed.

Second, participating devices are strongly heterogeneous,
coming from different vendors and having diverse hardware
and software. The Internet built its interoperability success
thanks to open standards defining protocol messages and
actions to take. Still, it enables very different implementa-
tion designs. Defining protocol extensions therefore requires
willingness, cooperation and efforts from the various imple-
mentations’ maintainers, a process that usually takes years,
when it succeeds [3].

Recently, the network community tacked the first middle-
box issue by introducing QUIC [4], a UDP-based transport

ISBN 978-3-903176-63-8 © 2024 IFIP

protocol with built-in encryption of not only the carried data,
but also its protocol metadata. Thanks to this encryption, all
control information, including extension negotiation, cannot be
altered by middleboxes, making QUIC resilient to their inter-
ference. QUIC attracted a lot of interest, and there is now more
than twenty publicly known implementations. This success
reintroduces the previously discussed heterogeneity issue. To
reach wide deployment, most of these implementations need
to agree on the proposed feature, and then integrate it and
deploy to devices. Only a few large actors can sustain such
effort, constraining innovation into their hands.

To enable inter-operable, implementation-independent inno-
vation at transport layer, we propose a paradigm shift called
Core QUIC. While Core QUIC keeps compliant with the
QUIC standard [4], it enforces implementation architecture
such that any Core QUIC-supporting participant can be
extended with the same plugin consisting in architecture-
independent bytecode. In addition, Core QUIC addresses
deployment and implementation concerns by enabling partial
support and does not require major changes in the implemen-
tation’s internals. To achieve this, Core QUIC defines a stan-
dardized representation format of common QUIC structures on
which plugins running in a controlled environment can operate
to extend the underlying host implementation. By making
two different implementations Core QUIC-compliant, we
demonstrate the feasibility of our approach.

The paper is organized as follow. First, Section II introduces
background on QUIC. Then, Section III details the archi-
tecture of Core QUIC. We describe our Core QUIC library
implementation in Section IV. We demonstrate how plugins
can extend our two Core QUIC implementations with several
use cases in Section V. Finally, Section VI discusses related
works and Section VII concludes the paper. Further details
and experiments are available in our technical report [5].

II. BACKGROUND ON QUIC

Our work focuses on QUIC, a transport protocol provid-
ing reliable and encrypted services atop UDP. To setup the
encryption, QUIC relies on TLS 1.3 [6]. During the TLS
handshake, QUIC endpoints advertise transport parameters
to communicate flow-control values as well as their support
for specific QUIC features and extensions. Unlike TCP, ex-
cept a connection identifier in the header that remains in
clear-text for routing purposes, the whole QUIC packet is

encrypted and authenticated. The encrypted payload contains
frames. These form the root QUIC messages, following a
type-value format. There are 262 possible frame type val-
ues [4]. While the STREAM frames carry the application
data, most of the frames are QUIC control information. The
ACK frame acknowledges to the peer the reception of QUIC
packets. The MAX DATA frame advertises the flow-control
limits. An endpoint can probe a network path using the
PATH CHALLENGE frame, expecting its peer to send back
a PATH RESPONSE. The PADDING frame increases the
packet’s size without containing any information and is usually
used to perform path MTU discovery.

III. DESIGNING CORE QUIC

The design of Core QUIC focuses on the easiness to
pluginize the implementation. Specifically, the effort required
by the QUIC maintainer to include all the pluginization
mechanisms should be as minimal as possible. The easier the
integration is, the higher the potential adoption of the system.
Specifically, Core QUIC has the following design objectives.

Core QUIC can dynamically load features on a per-
connection basis, regardless of the QUIC host implemen-
tation. The fundamental idea behind Core QUIC is to have
implementations that can be tuned or extended without re-
quiring binary change. While PQUIC [7] shares a similar idea,
the development of its plugins is strongly tight to the PQUIC
implementation. Instead, Core QUIC provides a common layer
where any compliant implementation can be safely extended
through the same plugin. Such a layer defines routines and
fields that any QUIC implementation needs to expose.

Implementations can incrementally support Core QUIC.
The story of the Internet taught us that successful solutions
need to be easily deployable. Given the paradigm shift of
Core QUIC, such a solution should be simple to integrate.
Furthermore, QUIC implementations have very different in-
ternal architectures and some QUIC features may be harder
to expose. To tackle this, initial Core QUIC support requires
minimal changes to the QUIC implementation. The common
layer exposition can then be incrementally implemented, and
Core QUIC checks at plugin load time that all the requested
elements are actually provided by the host implementation.

Core QUIC plugins operate in a safe architecture-
independent environment. Plugins consist in bytecode that
may have been written by anyone. They may contain uninten-
tional mistakes or malicious content. To mitigate this, plugins
operate in an isolated environment and cannot access memory
outside of its scope.

Core QUIC supports the combination of non-
overlapping plugins. In both TCP and QUIC, many ex-
tensions can be simultaneously enabled on a given session.
Indeed, these usually provide orthogonal features and, when
applicable, define extension-specific messages. Core QUIC
keeps this property at the plugin level, as long as plugins do
not override the exact same QUIC routine. Furthermore, these
plugins can collaborate through a well-defined interface.

pluginop-commonpluginop-macro

FFI

pluginop pluginop-wasm

Host implementation Plugin bytecode

Fig. 1. Architectural view of the different components of pluginop. Plain
arrows mean ”uses”, dashed arrows mean ”interacts”.

To achieve this, this paper introduces pluginop, a library
enabling QUIC implementations to be dynamically extended
through plugins. Figure 1 shows the four architectural com-
ponents. The core pluginop library is the one a QUIC
implementation needs to integrate to become Core QUIC-
compliant. The remaining of this Section describes how these
building blocks work together to define the protocol routines
(Section III-A), to set up a common representation layer
(Section III-B), to run plugins in a safe environment (Sec-
tion III-C) and to integrate Core QUIC in an existing QUIC
implementation (Section III-D).

A. Defining Protocol Routines

Core QUIC defines hooks inside QUIC implementations,
called protocol routines (PRs), that correspond to operations
that any QUIC agent must provide. Each PR define input pa-
rameters and, optionally, output values. The definition of such
PRs introduces a trade-off. On the one hand, having numerous
PRs enables fine-grained protocol tuning and extensibility. On
the other hand, requiring support for a large number of PRs
makes it harder for implementations, having different software
architectures, to fully support Core QUIC. Core QUIC PRs
should be common to all implementations.

To use an extension, QUIC first needs to negotiate it. QUIC
endpoints advertise parameters and support for extensions
through QUIC transport parameters, exchanged during the
handshake. Such transport parameters follow a well-known
type-length-value scheme. If both participants advertise the
value, the extension is then enabled.

To interact with transport parameters, we introduce two
PRs: WriteTransportParameter and DecodeTransportParam-
eter. Each of these take as parameter the type of the transport
parameter, i.e., an unsigned integer up to 262 − 1. Different
plugins can then concurrently define new transport parameters
having different types. Plugins then register these new types
to make the host implementation aware of them.

Once negotiated, the plugin can then define frames with
new types. Like transport parameters, the plugin advertises
its frame registrations to make Core QUIC aware of these
types. Core QUIC defines nine frame-related PRs, all taking
as parameter the frame type. Algorithm 1 shows how these PRs
operate when sending plugin-defined frames. When preparing
a packet to be sent, the Core QUIC implementation collects
all the frame registrations made by the loaded plugins. Then,
for each registration, Core QUIC checks whether such frames
should be part of the next packet thanks to the five PRs

Algorithm 1 Protocol routines when sending frames.
for all frame reservations r do

if ShouldSendFrame(r.frame type()) then
f ← PrepareFrame(r.frame type())
if FrameWireLen(r.frame type()), f) ≤ buf len then

if WriteFrame(r.frame type()), f) = OK then
OnFrameReserved(r.frame type()), f)

end if
end if

end if
end for

described in Algorithm 1. Note that PRs may also alter the
sending processing, e.g., to stop sending packets for some
reason (see, e.g., Sect. V-B). Once the packet sent, the plugin
can later be notified whether the frame was acknowledged or
declared as lost thanks to the NotifyFrame routine.

The receiving process, on its side, consists of two PRs.
The first, ParseFrame, takes the raw bytes of the buffer and
converts it into an internal processable structure. The second,
ProcessFrame, uses the internal structure to adapt the state
of the running connection. Finally, the optional LogFrame
enables the plugin to provide a textual description of the frame.

One could note that some PRs may have been merged. Pre-
pareFrame, FrameWireLen, and WriteFrame could have been
combined into a single PR, as some QUIC implementations
do. However, other ones have different internals where the
frame scheduling and the on-wire conversion are performed by
distinct modules. To ease its adoption, and because splitting
a function into several smaller ones is usually a small effort,
Core QUIC adopts this decomposed scheme.

In addition to the previous ones, Core QUIC defines three
additional PRs. Init is used to initialize the plugin, e.g., to
make registrations. OnPluginTimeout provides timer-based
callbacks and are further described in Section III-C. Plugin-
Control serves as an external API, similar to ioctl, that can
be called by other plugins or by the application.

While extensions usually define new behaviors with new
PRs, they may also want to monitor routines without directly
altering them, e.g., for logging purposes. Each PR has three
anchors. The DEFINE anchor sets the behavior of the PR,
with at most one attached plugin. The BEFORE and AFTER
anchors defines hooks when calling and returning from the PR,
respectively. Multiple plugins can attach on the same BEFORE
and AFTER anchors. However, unlike the DEFINE one, code
loaded with these anchors cannot modify the Core QUIC host
implementation state and does not output any value.

Finally, note that a plugin should not support a new frame
if the extension is not supported by the peer. To achieve this,
Core QUIC splits the plugin loading into two steps. Initially,
only Init, WriteTransportParameter and DecodeTransport-
Parameter are loaded. If the negotiation succeeds, or if no
negotiation is needed, the plugin notifies Core QUIC that all
the remaining routines can be loaded.

B. Specifying a Common Representation

Since plugins extend or tune running connections, they need
to access their state. To interact with Core QUIC implementa-
tions, plugins need a stable interface. This not only covers the
routines (as described in Sec. III-A), but also the exposed data
structures. For instance, from Alg. 1, PrepareFrame outputs a
frame structure that is then taken as input of FrameWireLen,
WriteFrame and OnFrameReserved. This frame structure may
have different internal representations on the Core QUIC host
implementation side, but the plugin must have a stable layout.

To define such interface, Core QUIC introduces two ele-
ments in the pluginop-common library shared by both the
host implementation and the plugin. The first element consists
in a list of all the QUIC fields that a plugin may access
or modify. Such fields derive from the core specification of
QUIC [4]. Depending on the host implementation internals,
some fields can be harder to collect. Instead of requiring
a complete support, Core QUIC implementations can only
provide access to a part of these fields. When loading a plugin,
Core QUIC checks that the host implementation supports all
the requested fields. If it is not the case, the plugin is denied
loading. Such an approach enables incremental Core QUIC
compliance, hence easing its adoption.

The exposed fields expose values corresponding to specific
types whose plugins and the host implementation must agree
on. To address this, the second element of the Core QUIC
interface consists in a list of data structure types that can
be exchanged between the Core QUIC implementation and
the plugin. Besides primitive types (boolean, integer,...), it
also provides time-related structures, socket address ones and
QUIC-specific fields such as frames. From the implementer
perspective, the main effort is to write the conversion from
the QUIC host internal data structure to the Core QUIC one.
Core QUIC follows the mapping of the QUIC specification [4]
for the exposed structures, so such effort is in practice limited.

Plugins may need to exchange raw bytes with the Core
QUIC host implementation. For such interactions, Core QUIC
adopts a capability-based approach by introducing a Bytes

type acting as an unforgeable token to the exchanged data.

C. Running Plugins

To dynamically extend the behavior of an implementation,
Core QUIC introduces an environment in which the extension
bytecode can be safely executed. Such an environment must
cope with two main concerns: i) abstracting the plugin from
the actual computer system, and ii) providing isolation mech-
anisms and monitoring capabilities on the external bytecode.

For this, Core QUIC relies on WebAssembly (Wasm) [8].
While initially scoped for the web browsers, it is also empow-
ering embedded devices [9] and blockchain [10] usecases. A
Core QUIC plugin, consisting in a Wasm module, defines the
different hooks it wants to attach thanks to its exported func-
tions. Specifically, the functions follow a naming convention
to determine to which PRs they are attached. When loading
the plugin, Core QUIC checks the different plugin’s exported
functions and maps their name to the associated PR. Except

TABLE I
SUMMARY OF THE CORE QUIC API AVAILABLE TO PLUGINS.

Category Purpose
Getters/Setters Interact with Core QUIC session

get_input/save_output Parameter communication
Bytes API Raw bytes reading/writing

File system API Read and write persistent files (logs,...)
Registration API Notify new types to host implementation
enable_plugin Fully enable all routines (negotiated)

Time API Provide timer-based callbacks

their name, all exported functions follow the same signature by
having a single integer input and a single integer output. This
output value notifies to the Core QUIC host implementation
whether the plugin correctly performed its function or failed.

To enable interactions between the isolated Wasm plugin
and the host implementation, Core QUIC makes available to
the Wasm VM the plugin’s API summarized in Table I. It in-
cludes getting and setting Core QUIC session’s state, fetching
and saving protocol routine-specific inputs and outputs, and
reading/writing raw bytes or files. It also provides functions
to register new types (transport parameters and frames) and
to fully activate the plugin (see Sec. III-A). Finally, the
Core QUIC API enables plugin to register timers along with
callback functions, providing event-based programmability.

Yet, Core QUIC implementations may want to restrict
parts of the API made available. For instance, a host im-
plementation may prevent untrusted plugins from accessing
sensitive session’s fields, such as cryptographic keys. Core
QUIC adopts a capability-based permission system whose
rights are determined by the host implementation. Different
permissions can be provided on a per-plugin basis, enabling
different levels of trust in the loaded plugins. If a plugin tries
to access a forbidden field or API, the running environment
will deny access by returning an error code to the plugin.

D. Making Implementations Core QUIC-Compliant

To support Core QUIC, a QUIC host implementation needs
to integrate the three previously discussed elements: i) turning
internal functions into PRs, ii) adding conversion functions
from internal data structures to Core QUIC ones, and iii)
embedding the plugin environment runtime. The pluginop

library eases this process by fully taking care of iii), remaining
for the implementer to focus on i) and ii).

To turn an internal function into a PR, the implementer
first wraps the content of the exposed function in an internal
one. Then, the original function needs to check if a plugin
is attached to the related PR with the given parameter. If so,
the inputs are converted to the Core QUIC types. The plugin
code can then be called at the related anchors thanks to the
pluginop library. If the PR outputs values, these are then
converted back to the host implementation types. When there
is no plugin for the PR at the DEFINE anchor, the function
then calls the original, wrapped internal function.

While the code performing data structure conversions is typ-
ically a purely additive change, the remaining changes are not.

core-quic

quiche

Plugin
Env WASM

Instance

PluginHandler
Bytes

Contents[]

ConnectionToPlugin
Trait

(Inner) Connection

Implements

Connection

Bundles

PluginizableConnection
pluginop

Application

Fig. 2. The architecture of pluginop. Black arrows mean ”contains”.

To limit the codebase changes, and indirectly human mistakes,
Core QUIC comes with a pluginop-macro library defining
macros that automate such code changes at compilation time.
Turning a function into a PR is then made with a single
line of code, making Core QUIC adoption easier. Note that
the implementer may need to add new code, e.g., to support
sending new frames as depicted by Algorithm 1, but without
requiring modification of the remaining code base.

IV. IMPLEMENTATION

To make Core QUIC concrete, we implemented the different
architectural components depicted in Figure 1. We rely on the
Rust language [11] as it enforces safety in performance-critical
software. Each block in Figure 1 corresponds to a Rust library.
To make an implementation Core QUIC-compliant, it needs to
integrate in its code base the pluginop library. Figure 2 de-
picts its internal architecture. To make a session pluginizable,
the implementer needs to wrap the connection structure into
a pluginop’s PluginizableConnection. This structure
contains two fields. The first is a PluginHandler that handles
all the processing required by the dynamic pluginization. The
second is the original connection structure itself, implement-
ing the ConnectionToPlugin trait. This trait contains two
methods that establishes a common interaction between the
pluginization engine and the QUIC implementation, while
abstracting the plugin complexity from the original connection.

The PluginHandler structure takes care of the pluginiza-
tion process. As it operates on a trait, it is agnostic to the
exact QUIC implementation. When a plugin wants to augment
a Core QUIC session, it is inserted in the PluginHandler. A
Plugin structure is created and contains the Wasm instance
along with a plugin-specific environment (e.g., the plugin’s
API permissions, its inputs/outputs,...). Our pluginop library
relies on the wasmer Wasm engine [12] to execute the plugin
bytecode. When calling a PR, PluginHandler checks if a
Plugin provides the requested routine in DEFINE anchor. If
so, the related bytecode is then executed, and its result given
back to the caller. Furthermore, the pluginop library provides
the API required by the plugins to be run.

While plugins correspond to Wasm modules, their source
code may be in any language. However, relying on unsafe

languages such as C may lead to exploitable Wasm byte-
codes [13]. Because the Rust language prevents a whole range
of safety issues by design, we offer to developers to write their
plugins in safe Rust. Yet, the Wasm external functions rely
on the Foreign Function Interface (FFI) which is, by essence,
unsafe to use. To mitigate this, the pluginop-wasm Rust
library handles all the serialization concerns related to the FFI
and provides a safe abstraction on which plugins can be built.
In addition, the pluginop-wasm exposes the Core QUIC data
structures defined by the pluginop-common library. Overall,
the generic libraries represent about 3250 lines of Rust code.

A. Integration into QUIC Implementations

To demonstrate the generality of Core QUIC’s PRs and
pluginop, we make two QUIC implementations Core QUIC-
compliant: Cloudflare’s quiche and quinn. Due to the QUIC
complexity, many implementations abstract the I/O interac-
tions from the protocol logic. This is the case for quiche,
and quinn delegates the protocol logic handling in the
quinn-proto library. Similar approaches are also taken by
other QUIC implementations, such as s2n-quic and neqo.

Ideally, the integration effort of Core QUIC into existing
implementations should be low. This translates into two con-
crete properties. First, the public API offered by these stacks
should not introduce any breaking changes, such as structure or
function renaming. Second, the code diff should be as low as
possible, and with only purely additive changes when possible.
Figure 2 shows how pluginop integrates with the quiche

implementation. To make it pluginizable, its Connection

structure needs to implement the ConnectionToPlugin trait
and some of its internal functions should be converted to PRs
thanks to the pluginop-macro library. Overall, this intro-
duces a code diff of +1043, -46 over a code base of 38000 lines
of Rust code. More than half of the additive changes are related
to conversion code between internal data structures and Core
QUIC’s ones. To let applications benefit from the Core QUIC-
compliant quiche version, we wrote a 100-line core-quic

library exposing public quiche API along with functions to
insert plugins on a per-session basis. These applications then
simply need to rely on the core-quic library instead of
the quiche without further code modification. Such results
suggest reasonable efforts to deploy Core QUIC in quiche.

Making the quinn implementation Core QUIC-compliant
only requires changes in the internal quinn-proto library,
leading to a code diff of +1184, -253. These are still mostly
additive changes, and the large negative change is due to the
wrapping of 200 lines of code into a dedicated function. Yet,
such changes remain reasonable for Core QUIC integration.

V. EXPLORING USE CASES

This section now provides some examples of use cases that
Core QUIC can currently provide. Each of the discussed use
cases and the corresponding plugins have been tested on our
two Core QUIC-compliant implementations, namely quiche

and quinn. We rely on the example client and server provided
by each implementation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transfer time [s]

0

2

4

6

8

D
en

si
ty

No plugin

With privacy plugin

Fig. 3. Time distribution of client’s packets of a 500 KB download.

A. Frame Logging

Analyzing QUIC network trace is not possible without
having access to the encryption keys. Usually, QUIC imple-
mentations can output logs [14] to let operators debug their
sessions. Core QUIC can also help in this process by embed-
ding the logging process in a plugin. Such a plugin relies on
the BEFORE and AFTER anchors of PRs to log the different
events in a file. We implemented a prototype reporting ACK
frame events, showing that plugins can provide monitoring
capabilities without altering the base QUIC behavior.

B. QUIC-based Privacy Solution

Although QUIC encrypts all the control and application
data, it is still exposed to privacy concerns. Packet sizes and
timestamps are side-channel information that can be leveraged
to build, e.g., website fingerprinting tools [15], [16]. The ob-
server can map a website by translating the network trace into
a feature vector. A classification algorithm then determines if
the feature vector is similar to a website’s one.

To counter such fingerprinting, endpoints could adopt de-
fenses consisting in padding and delaying packets sent by the
participating entities. To show how Core QUIC can contribute
to this field, we built a plugin that pads all packets to the
MTU size (using PADDING frames) and adds random delay
between sent packets. To achieve such packet delaying, Core
QUIC relies on the return value of the PrepareFrame routine
to halt the batch of packet sending. The delay is then controlled
by the Time API provided to the plugin (see Table I). When the
plugin timer fires, Core QUIC invokes the OnPluginTimeout
behavior provided by the plugin, which then enables further
packet sending. Note that this plugin, while altering the
sending logic, does not introduce any extension on the wire.
Therefore, such a feature does not require negotiation and can
be deployed on only one participating endpoint.

To evaluate its impact, we perform a Mininet [17] evaluation
between a quinn client downloading a 500 KB file on a
quiche server connected through a 50 Mbps, 40ms RTT
network path. We consider two setups: i) the regular behavior
of the unmodified implementations, and ii) both the quinn

client and the quiche server are tuned by the same plugin
that pads and delays sent packets. For each variant, we perform
30 runs. Figure 3 shows that the unmodified time distribution

0 200 400 600 800 1000 1200 1400

Packet length [Bytes]

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
ve

D
is

tr
ib

u
ti

o
n

F
u

n
ct

io
n

No plugin

With privacy plugin

Fig. 4. Size distribution of server’s packets of a 500 KB download.

of the client’s sent packets is driven by the received server’s
packets following the typical Cubic’s slow start increase. The
random delay introduced by the plugin breaks this pattern
by flattening and expanding the probability density function
curve. A similar result is observed for the time distribution of
server’s sent packets. Besides, Figure 4 shows that server’s
packet sizes reflect the congestion control limitation. The
injected plugin hides such information by padding all the
packets (except the QUIC Initial packets being 1200-byte long)
to the MTU size of the network path, i.e., 1350 bytes.

C. Application-controlled Network Probing

Existing QUIC implementations provide different APIs. An
application may want a feature that its serving implemen-
tation does not give access. As an example, an application
facing an idling connection may need to probe its network
path. A possible way to achieve this in QUIC is to send
a PATH CHALLENGE frame and the peer replies with a
PATH RESPONSE one. Our prototype plugin provides a
PluginControl API where the application can request the
sending of the probe. Another PluginControl entry point
enables the application to get the experienced latency between
the PATH CHALLENGE and the PATH RESPONSE.

D. Optimizing QUIC in Large RTT Scenarios

QUIC brings interests to operate it in challenging environ-
ment such as satellite or interplanetary communications, where
there is a large bandwidth with a consequent latency due to
the distance between endpoints. The congestion control’s slow-
start process usually takes several RTTs before operating on
the available bandwidth, affecting short transfers’ experience.
A recent proposal [18] suggests defining a frame where the
server advertises to the client its congestion control state. In
future connections to the same server, the client sends back the
content of that frame to the server and allow it to resume its
congestion control state to directly operate at the target rate.

We implement the proposed BDP frame idea in a plugin. To
evaluate its potential benefits, we consider a Mininet scenario
where endpoints are connected to a 50 Mbps, 500ms RTT
network path. We consider the four possible setups where
the quinn and quiche implementations operate as the client
and/or the server. For each case, we compare the default

C: quiche
S: quiche

C: quiche
S: quinn

C: quinn
S: quiche

C: quinn
S: quinn

0

5

10

15

20

R
eq

u
es

t
ti

m
e

fo
r

2
0

M
B

[s
]

Without plugin

With BDP frame plugin

Fig. 5. The BDP frame plugin enables the server to directly operate to a
suitable operating state. Each distinct case is run 20 times.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Transfer Time [s]

0

500

1000

C
li
en

t
P

a
ck

et
S

iz
e

[B
yt

es
]

Fig. 6. Occurrences of client’s packets when combining the DUMMY frame
extension with the privacy padding one.

behavior of the implementations with the one provided by our
plugin. Figure 5 shows the median and the standard deviation
of the transfer time to download a 20 MB file. In such a
large RTT scenario, a lot of time is wasted in probing the
network capacity and the transfer completes when the quinn

server finally reaches its target rate. We note that the Cubic
implementation in the quiche server badly behaves in such
cases, exiting slow start without reaching the optimal value.
With the plugin’s BDP frame, the server can directly reuse
the optimal congestion control state for the scenario and the
transfer time considerably decreases in all studied cases.

E. Combining Extensions

The design of Core QUIC supports the inclusion of multiple
plugins providing orthogonal extensions. All the previously
discussed plugins can be injected over a single connection
to merge their functionalities. But plugins can also cooperate
between each other’s. To illustrate this, we setup the following
toy case. The privacy padding plugin has a PluginControl
routine letting the caller to dynamically enable the packet
padding and delaying features over the session. We then
define a new plugin introducing a dummy frame. This plugin
negotiates it and then sends this new frame when there is
no other dummy frame in-flight. This implements a once-
per-perceived-RTT sending logic. Every four received dummy
frame, the endpoint calls the PluginControl routine provided
by the privacy padding plugin to toggle its activation.

To visualize this feature, we consider a scenario where
the quiche client loads both the privacy padding and the
dummy frame plugins, while the quinn server only inserts the
dummy frame one. We consider a scenario where endpoints
are connected by a 50 Mbps, 100ms RTT network path.
Figure 6 shows the time and the size of packets sent by the
client for a given run. Initially, the privacy plugin pads the
client’s packets to the MTU size. After about 400ms, the client
received four dummy frames from the server and disabled the
privacy plugin, leading to much smaller packets. Then, about
400ms later, the privacy plugin is enabled again. This toggling
continues until the end of the transfer, but this later tends
to happen every second. This is due to the Cubic’s server
congestion control that saturates the path, and the network
buffer introduces queuing delay, increasing the perceived RTT.
The client packets between 1.75 s and 2.5 s contains large ACK
frames with up to 70 ACK blocks. These illustrate packet
losses due to the saturation of the network buffer.

VI. RELATED WORKS

While there is a large research community around pro-
grammable networks using Software Defined Networks [19]
and P4 [20], these target network layer solutions and usually
require specific hardware. At the transport layer, there were
previous attempts in making configurable and extensible trans-
port protocols [21], [22]. These were not widely deployed for
several reasons (unencrypted protocols, very specific imple-
mentation architecture,...). With the rise of the QUIC protocol,
researchers [7] proposed PQUIC to dynamically extend a
QUIC implementation with plugins executed by a virtual
machine. For this, PQUIC relies on a user-space version of the
eBPF VM thanks to its popularity in the Linux kernel [23].
However, plugins are tight to the researchers’ implementation
and PQUIC relies on a core hash-table holding all exposed
operations, requiring large implementation changes. More
recently, Wirtgen et al. [3] proposed xBGP, a solution to
dynamically extend BGP implementations with a same plugin.
While xBGP has similar ideas, Core QUIC focuses on the
QUIC protocol and relies on different building blocks, e.g., to
run plugins. Both PQUIC and xBGP relies on eBPF bytecode.
While the in-kernel eBPF has now a mature support, it bases
on features provided by the Linux kernel (verifier, BPF Type
Format,...). The integration for other applications requires con-
sequent effort that is error-prone such as memory management
and isolation [24]. Unlike eBPF, Wasm, on which Core QUIC
is based, was designed with security in mind [25]. There are
also orthogonal works applying dynamic programmability in
other encrypted protocols [26], [27].

VII. CONCLUSION

This paper presented Core QUIC, an extension to the
QUIC standard that enables its compliant implementations
to be dynamically extended by a common, implementation-
agnostic plugin. Once deployed, Core QUIC nodes provides
protocol tuning and extensibility without requiring any change
to the implementation’s binary. We demonstrated that such

an approach is deployable by making two different QUIC
implementations Core QUIC-compliant with limited code base
changes. We also showcased a few use cases where a same plu-
gin can extend both Core QUIC-compliant implementations.

We believe Core QUIC addresses the transport protocol
extensibity inertia. While it can be deployed at both sides, Core
QUIC is well-suited for client implementations, often being
out of control, and server can then natively implement exten-
sions they want to support. Our future works include making
more implementations Core QUIC-compliant to strengthen the
genericity of the API and extending Core QUIC to cover more
complex use cases requiring more than operations on frames.

Artifacts available: https://core-quic.github.io.

REFERENCES

[1] M. Honda et al., “Is It Still Possible to Extend TCP?” in ACM IMC ’11,
2011, pp. 181–194.

[2] L. Budzisz et al., “A taxonomy and survey of SCTP research,” ACM
Computing Surveys (CSUR), vol. 44, no. 4, p. 18, 2012.

[3] T. Wirtgen et al., “xBGP: Faster innovation in routing protocols,” in
USENIX NSDI’23, Apr. 2023, pp. 575–592.

[4] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[5] Q. De Coninck, “Core QUIC: Enabling Dynamic, Implementation-
Agnostic Protocol Extensions,” arXiv preprint arXiv:2405.01279, 2024.

[6] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, Aug. 2018.

[7] Q. De Coninck et al., “Pluginizing QUIC,” in ACM SIGCOMM ’19.
Beijing, China: ACM Press, 2019, pp. 59–74.

[8] A. Haas et al., “Bringing the web up to speed with WebAssembly,”
ACM SIGPLAN Notices, vol. 52, no. 6, pp. 185–200, 2017.

[9] M. Jacobsson and J. Willén, “Virtual machine execution for wearables
based on webassembly,” in EAI BODYNETS, 2018, pp. 381–389.

[10] eosio, “Eos virtual machine: A high-performance blockchain
webassembly interpreter,” 2019. [Online]. Available: https://eos.io/news/
eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter/

[11] N. D. Matsakis and F. S. Klock II, “The rust language,” ACM SIGAda
Ada Letters, vol. 34, no. 3, pp. 103–104, 2014.

[12] WasmerIO, “Wasmer,” https://github.com/wasmerio/wasmer.
[13] D. Lehmann et al., “Everything old is new again: Binary security of

WebAssembly,” in USENIX Security ’20, 2020, pp. 217–234.
[14] R. Marx et al., “Debugging quic and http/3 with qlog and qvis,” in ACM

ANRW ’20, 2020, pp. 58–66.
[15] M. S. Rahman et al., “Tik-tok: The utility of packet timing in website

fingerprinting attacks,” PoPETs ’20, vol. 3, pp. 5–24, 2020.
[16] J.-P. Smith et al., “QCSD: A QUIC client-side website-fingerprinting

defence framework,” in USENIX Security ’22, pp. 771–789.
[17] N. Handigol et al., “Reproducible Network Experiments Using

Container-Based Emulation,” in ACM CoNEXT ’12’, pp. 253–264.
[18] N. Kuhn et al., “Signalling CC Parameters for Careful Resume using

QUIC,” IETF Draft draft-kuhn-quic-bdpframe-extension-05, Mar. 2024.
[19] N. McKeown et al., “OpenFlow: enabling innovation in campus net-

works,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.
[20] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

cessors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.
[21] P. G. Bridges et al., “A Configurable and Extensible Transport Protocol,”

IEEE/ACM ToN, vol. 15, no. 6, pp. 1254–1265, Dec. 2007.
[22] P. Patel et al., “Upgrading Transport Protocols using Untrusted Mobile

Code,” ACM SIGOPS OSR, vol. 37, no. 5, pp. 1–14, 2003.
[23] M. Fleming, “A thorough introduction to eBPF,” Linux Weekly News,

Dec. 2017, https://old.lwn.net/Articles/740157/,Accessed:2021-02-04,.
[24] Q. De Coninck et al., “On integrating ebpf into pluginized protocols,”

ACM SIGCOMM CCR, vol. 53, no. 3, pp. 2–8, 2024.
[25] J. Dejaeghere et al., “Comparing security in ebpf and webassembly,” in

ACM Workshop on eBPF and Kernel Extensions, 2023, pp. 35–41.
[26] F. Rochet et al., “Tcpls: Modern transport services with tcp and tls,” in

ACM CoNEXT’21, 2021, p. 45–59.
[27] F. Rochet and T. Elahi, “Towards flexible anonymous networks,” arXiv

preprint arXiv:2203.03764, 2022.

